Trust based Personalized Recommender System
نویسندگان
چکیده
We rely on the information from our trustworthy acquaintances to help us take even trivial decisions in our lives. Recommender Systems use the opinions of members of a community to help individuals in that community identify the information most likely to be interesting to them or relevant to their needs. These systems use the similarity between the user and recommenders or between the items to form recommendation list for the user. They do not take into consideration the social trust network between the entities in the society to ensure that the user can trust the recommendations received from the system. The paper proposes a model where a trust network exists between the peer agents and the personalized recommendations are generated on the basis of these trust relationships. The recommenders personalize recommendations by suggesting only those movies to user that matches its taste. Also, the social recommendation process is inherently fuzzy and uncertain. In the society, the information spreads through word-of-mouth and it is not possible to fully trust this information. There is uncertainty in the validity of such information. Again, when a product is recommended, it is suggested with linguistic quantifiers such as very good, more or less good, ordinary, and so on. Thus, uncertainty and fuzziness is inherent in the recommendation process. We have used Intuitionistic Fuzzy Sets to model such uncertainty and fuzziness in the recommendation process.
منابع مشابه
A social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملDesigning a trust-based recommender system in Social Rating Networks
One of the most common styles of business today is electronic business, since it is considered as a principal mean for financial transactions among advanced countries. In view of the fact that due to the evolution of human knowledge and the increase of expectations following that, traditional marketing in electronic business cannot meet current generation’s needs, in order to survive, organizat...
متن کاملMerging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملAn Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms
With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...
متن کاملHybrid Adaptive Educational Hypermedia Recommender Accommodating User’s Learning Style and Web Page Features
Personalized recommenders have proved to be of use as a solution to reduce the information overload problem. Especially in Adaptive Hypermedia System, a recommender is the main module that delivers suitable learning objects to learners. Recommenders suffer from the cold-start and the sparsity problems. Furthermore, obtaining learner’s preferences is cumbersome. Most studies have only focused...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997